Alginate beads as a storage, delivery and containment system for genetically modified PCB degrader and PCB biosensor derivatives of Pseudomonas fluorescens F113.

نویسندگان

  • B Power
  • X Liu
  • K J Germaine
  • D Ryan
  • D Brazil
  • D N Dowling
چکیده

AIMS Pseudomonas fluorescens F113Rifpcb is a genetically engineered rhizosphere bacterium with the potential to degrade polychlorinated biphenyls (PCBs). F113Rifpcbgfp and F113L::1180gfp are biosensor strains capable of detecting PCB bioavailability and biodegradation. The aim of this paper is to evaluate the use of alginate beads as a storage, delivery and containment system for use of these strains in PCB contaminated soils. METHODS AND RESULTS The survival and release of Ps. fluorescens F113Rifpcb from alginate beads were evaluated. Two Ps. fluorescens F113-based biosensor strains were encapsulated, and their ability to detect 3-chlorobenzoate (3-CBA) and 3-chlorobiphenyl (3-CBP) degradation in soil was assessed. After 250 days of storage, 100% recovery of viable F113Rifpcb cells was possible. Amendments to the alginate formulation allowed for the timed release of the inoculant. Encapsulation of the F113Rifpcb cells provided a more targeted approach for the inoculation of plants and resulted in lower inoculum populations in the bulk soil, which may reduce the risk of unintentional spread of these genetically modified micro-organisms in the environment. Encapsulation of the biosensor strains in alginate beads did not interfere with their ability to detect either 3-CBA or 3-CBP degradation. In fact, detection of 3-CBP degradation was enhanced in encapsulated biosensors. CONCLUSIONS   Alginate beads are an effective storage and delivery system for PCB degrading inocula and biosensors. SIGNIFICANCE AND IMPACT OF THE STUDY Pseudomonas fluorescens F113Rifpcb and the F113 derivative PCB biosensor strains have excellent potential for detecting and bioremediation of PCB contaminated soils. The alginate bead delivery system could facilitate the application of these strains as biosensors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polychlorinated biphenyl rhizoremediation by Pseudomonas fluorescens F113 derivatives, using a Sinorhizobium meliloti nod system to drive bph gene expression.

Rhizoremediation of organic chemicals requires high-level expression of biodegradation genes in bacterial strains that are excellent rhizosphere colonizers. Pseudomonas fluorescens F113 is a biocontrol strain that was shown to be an excellent colonizer of numerous plant rhizospheres, including alfalfa. Although a derivative of F113 expressing polychlorinated biphenyl (PCB) biodegradation genes ...

متن کامل

Fluorescence resonance energy transfer (FRET) based molecular detection of a genetically modified PCB degrader in soil.

Genetic analysis of the location of a mini-Tn5 promoted insertion of the LB400 bph operon in the rhizosphere coloniser Pseudomonas fluorescens F113rifPCB, allowed the development of a specific PCR detection system based on the unique DNA sequence at this insertion site. Real time PCR using both SYBR green chemistry and Fluorescence Resonance Energy Transfer probes allowed the precise identifica...

متن کامل

Sodium Alginate/Starch Blends Loaded with Ciprofloxacin Hydrochloride as a Floating Drug Delivery System - In Vitro Evaluation

In the present study, Floating Drug Delivery Beads (FDDS) were prepared with sodium alginate/ starch blend as a matrix, sodium hydrogen carbonate as a pore forming agent, methyl cellulose as a binder and barium chloride solution as a hardening agent. In order to prepare the beads with different porosity and morphology the ratio between pore forming agent to polymer blend and ratio of the co...

متن کامل

Carbon fractions in the rhizosphere of pea inoculated with 2,4 diacetylphloroglucinol producing and non-producing Pseudomonas fluorescens

The aim of this work was to determine the effect of wild type and functionally modified Pseudomonas fluorescens strains on C fractions in the rhizosphere of pea. The lacZY marked F113 strain produces the antibiotic 2,4 diacetylphloroglucinol (DAPG) useful in plant disease control. The modified strain of F113 was repressed in production of DAPG, creating the DAPG negative strain F113 G22. The F1...

متن کامل

Efficient rhizosphere colonization by Pseudomonas fluorescens f113 mutants unable to form biofilms on abiotic surfaces.

Motility is a key trait for rhizosphere colonization by Pseudomonas fluorescens. Mutants with reduced motility are poor competitors, and hypermotile, more competitive phenotypic variants are selected in the rhizosphere. Flagellar motility is a feature associated to planktonic, free-living single cells, and although it is necessary for the initial steps of biofilm formation, bacteria in biofilm ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied microbiology

دوره 110 5  شماره 

صفحات  -

تاریخ انتشار 2011